INDEX CARD #9 (BACK & FRONT)

CIRCLES

<u>CENTER – RADIUS FORM:</u> $(x - h)^2 + (y - k)^2 = r^2$ CENTER: (H,K) TAKE THE OPPOSITE OF THE NUMBER AFTER X AND Y RADIUS: $\sqrt{r^2}$

TO CHANGE FROM CENTER RADIUS TO STANDARD FORM:

- 1. REWRITE EACH SQUARE ()()
- 2. FOIL (DOUBLE DISTRIBUTE)
- **3.** Get everything on one side = 0
- **4. PUT IN ORDER** $Ax^2 + By^2 + Cx + Dy + E = 0$

STANDARD FORM: $Ax^2 + By^2 + Cx + Dy + E = 0$

TO CHANGE FROM STANDARD TO CENTER RADIUS FORM:

- 1. GROUP THE XS AND THE YS AND MOVE THE # TO THE OTHER SIDE
- 2. COMPLETE THE SQUARE FOR THE XS THEN FOR THE YS FIND B

THEN $\frac{B}{2}$

THEN $\left(\frac{B}{2}\right)^2$

ADD THE $\left(\frac{B}{2}\right)^2$ TO BOTH SIDES (OF THE = SIGN)

3. REWRITE AS $(x + \frac{B}{2})^2$ AND REPEAT FOR YS = SUM OF #S

IF YOU DO NOT HAVE A RADIUS BUT KNOW A POINT ON THE CIRCLE USE THE DISTANCE FORMULA $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ to find the Radius